Predicting the binding of small molecules to nuclear receptors using machine learning

Abstract

Nuclear receptors (NRs) are important biological targets of endocrine-disrupting chemicals (EDCs). Identifying chemicals that can act as EDCs and modulate the function of NRs is difficult because of the time and cost of in vitro and in vivo screening to determine the potential hazards of the 100 000s of chemicals that humans are exposed to. Hence, there is a need for computational approaches to prioritize chemicals for biological testing. Machine learning (ML) techniques are alternative methods that can quickly screen millions of chemicals and identify those that may be an EDC. Computational models of chemical binding to multiple NRs have begun to emerge. Recently, a Nuclear Receptor Activity (NuRA) dataset, describing experimentally derived small-molecule activity against various NRs has been created.